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Three stability problems are considered for layered elastic systems. The problems can be treated completely analytically. These 
systems are packs consisting of arbitrary numbers of identical infinite plates attached by identical layers of a soft medium modelled 
as a Winlder foundation. The problems differ in the nature of the boundary conditions assigned to the faces of the packets. Each 
face can be either free, or attached to a non-deformable support. A cylindrical corrugation is sought everywhere. In all eases 
the critical force, the wlmle load spectrum and all the forms of stability loss are given by simple explicit formulae. 

1. THE T O E P L I T Z  MATRIX CASE 

We will consider the plane formulation of the problem of the stability of plates in a packet, shown in 
Fig. l(a). The packet consists of n plates of thickness h, each one made up of a stiff material (with shear 
modulus G and Poisson's ratio v), attached along their faces to n + 1 layers of thickness H of a flexible 
material (with elasticity characteristics Gp and vp). The top and bottom soft layers are attached to non- 
deformable casings. The x axis of a Cartesian system of coordinates is directed towards us, the y axis 
to the right and the z axis upwards. The width is the dimension of the packet along x, the length is the 
dimension along y, and the height is the dimension along z. A compressive load of magnitude T per 
unit width acts along they axis on each plate. The plates are numbered from the bottom upwards with 
indices i = 1 . . . .  , n. The indices i = 0, n + 1 are assigned to the casings, if necessary. The cylindrical 
stiffness of each pl~Lte is given by the formula [1-3] 

Eh 3 
D= 

12(1 - v 2 ) 

The plate deflect:ion wi as a result of the load T is governed by the equation [1-3] 

D w i  + Twi" = qi,  i = 1 . . . . .  n (1.1) 

(where the primes denote differentiation with respect to y). 
The transverse + load on the ith plate, qi, is composed of loads q i  a n d  q:, from the soft layers lying above 

and below the plate. We adopt the Winkler hypothesis q = -13w for the soft layers, with rigidity coefficient 
13. Here, naturally, ÷ q i = -q7+1: the soft layers do not "redistribute" the pressure along the y axis. We 
have 

qi = q+ + q i ,  q+, = - ~ ( w i  - wi+l ), q? = -~J(w i - wi_ 1 ) (1.2) 

Note that the loads are proportional to the d i f f e rence  of the deflections of neighbouring plates, and 
the rigidity of the medium to small bending is given by the formula 

[3 = Gp (1 .3)  
H(I - re)  

As the casings are non-deformable 
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(a) (b) (c) 

..,~.- 

Fig. 1. 

W 0 = W n +  1 = 0 (1.4) 

and for the lowest and highest plates we have 

q~-=-~w,, qn + = -~w n (1.5) 

Substituting (1.2) into (1.1) using (1.4) we obtain the system of governing equations 

D w  i + T w  7 + ~ ( - w i q  + 2 w  i - wi+ I ) = 0 (1.6) 

This is a linear homogeneous system with constant coefficients. A non-trivial solution corresponds 
to loss of stability (corrugation) of the plates. For convenience we divide each equation by the non- 
zero factor ~l and write out the characteristic matrix of the system 

-1 0 0 0 

-1 -1 0 0 

0 -1 -1  0 

0 . 0 -1  ; 

0 ... 0 0 -1 

0 ... 0 0 0 

°.o 

-1 0 

-1 

-1 

D 4 + T X2 (1.7) 

We temporarily ignore the connection between ~ and ~. and consider the matrix (1.7) as a function 
of a complex variable ~ and find all the roots ~ of the equation dn=  0 in which dn is the determinant 
of the (n x n)-matrix (1.7). Expanding along the first (or last) column (or row) we obtain the recurrence 
relation 

d,, = ~d,,_t - d,,_2 (1.8) 

where d n q ,  dn-2  are determinants of similar matrices given by their subscripts. The technique used below 
works for any recurrence of the form (1.8) and is explained, for example, in [4]. 

Suppose we have rewritten (1.8) in the form 

dn = (a  + b)dn_~ --abdn_2 (1.9) 

i.e. we have succeeded in finding two complex numbers a and b such that 

= a + b, a b  = 1 (1.10) 

Then, regrouping the terms in (1.9) by two methods, we obtain 

(d,, - ad, ,_ I ) = b ( d , , q  - ad, ,_ 2 ), (d,, - bd,~_ l )  = a ( d n - I  - b d , , - 2 )  (1.11) 

Considering the (1.11) as recurrence relations (geometric progressions) for the differences contained 
in the brackets, and applying these relations repeatedly, we arrive at the formulae 
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( d .  - a d . _  l ) = b n - 2  ( d  2 - a d  t ), ( d,, - bd ._  I ) = a "-2 ( d 2 - b d  I ) (1.12) 

All the quantities on the right-hand sides of  (1.12) can be easily expressed in terms of  

d 2 -  ~2-  1, d j = ~  (1.13) 

and a and b are roots of  the quadratic equation 

X 2 - ~X + ! = 0 (1.14) 

When a # b, eliminating dn_ 1 from (1.12), we obtain 

dn = (a"-l(d2 - b d l )  - b"-l(d2 - adl) )[ (a  - b) (1.15) 

Substituting (1.10) into (1.13), from (1.15) we obtain the formula 

d n = (a n+l -- bn+l) / (a  -- b )  (1.16) 

Below it is convenient to use exponential notation for the complex numbers 

a = l a lei% b --- I b le iv (1.17) 

where 9 and ¥ are the principal values of the argument in the complex plane with a cut along the negative 
semi-axis. The condition a b  = 1 gives 

l a l = l / I b l ,  W = - ~  (1.18) 

Computing powers of the right-hand side of (1.17), substituting into (1.16) and using Euler's formula 
and ¥ = --9, we obtain 

(lal n+j -I bP +l )cos(n + 1)9 + i(laP +l +1 bl  n+l )sin(n + 1)9 

(lal-lbl)cost o + i(lal+lbl)sin t 0 (1.19) 

The denominator vanishes only when I a I = I b I and sin 9 = 0. The numerator vanishes only when 
I a I = I b I and sin(n + 1)9 = 0. Thus, comparing this with the first formula of  (1.19), we conclude that 
dn vanishes only when 

lal = Ibl = 1, sin(n + 1)9 = 0, sin9 * 0 (1.20) 

from which it follows that 

/at 
9 =  n+-----~' k =+1,+2 ..... +n (1.21) 

i r respec t i ve  o f  the  v a h ~ s  o f ~ ,  and the numbers a and b are complex conjugate. From the condition ~ = 
a + b it therefore follows that 

= 2Rea = 2Reb (1.22) 

or, using Euler's formula and (1.21) 

k~ 
~k = 2 c ° s n + l ,  k = l  ..... n (1.23) 

Formula (1.23) gives exactly n different roots of the equation dn = 0. Because dn is a polynomial in 
of  degree n there are no other roots. The case a = b, omitted previously, need not be considered, 

although such consideration presents no difficulty and leads to an equation without roots. 
We now turn to relation (1.7) between ~ and ~. Substituting the values of  ~ from (1.23) in place of 
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in these formulae, we obtain n independent biquadratic equations for 

~ . 4  +~k2  +2 -~k  = 0, k = l  ..... h (1.24) 

For any k = 1 , . . . ,  n the free term on the left-hand side of (1.24) is positive. Hence, from an analysis 
of the movement of roots in the complex plane as T increases from zero, or from the multiplicity 
condition for the 7~ 2 roots, we obtain n equations 

T k = 2 [ D ~ ( 2 - ~ k ) ]  ~ ,  k = l  ..... n (1.25) 

It is obvious that the smallest of the n values of Tk is obtained when k = 1 and is given by 

T, n = T  1=2 2D l-COSn+ 1 (1.26) 

Here the index n means that the packet has n plates, and the asterisk denotes that it is the critical 
value of the load. 

Expressing D and [] in terms of the elastic constants and using E = 2G(1 + v), we obtain 

T.n= l - c o s  T,l=2 (1.27) 
n+ l  (1-vp)  ( l - v )  

As n increases to infinity the critical force tends to zero. As n changes from 1 to 20 its value decreases 
by an order of magnitude. 

The form of the loss of stability for an arbitrary pack of plates is sinusoidal with semi-wavelength 

+  Io¢, + + ) 1  L-ff  .÷1 (1.28) 

It is important to emphasize that the period of the sine-wave is the same for all the plates of the 
pack. They only differ in amplitude. The amplitude distribution with respect to the plate number is 
completely given by the eigenvector of the matrix (1.7), defined as always apart from a normalizing 
factor. The components Wj of the eigenvector corresponding to ~ are given by the formula 

wk = sin jk~ j ,  k = 1 ..... n (1.29) 
l n+ l  ' 

from which it is clear that the sign of all the eigenvector components for ~t are the same. This sort of 
stability loss is called in-phase [5]: concavities lie below concavities and convexities below convexities. 
The amplitude of the deflection is smaller the nearer the plate is situated to a casing. This is not the 
case for the higher modes. 

Formula (1.28) shows that the greater the number of plates in the pack, the larger the corrugation 
generated in the packet. The critical length of the wave tends to infinity when the number of plates 
increases without limit. As n varies from 1 to 20, its value triples. 

Decoding D and I], we rewrite (1.28) as follows: 

l*n=~ l - C ° S n + l  Gp -l- 'v  h3H (1.30) 

(the indices have the same meaning as in (1.26)). 
If the packet in Fig. l(a) is thought of as a pack of strips of unit width, the expressions inside the 

roots in (1.25) and (1.30) should include the factor 1/(1 - v2). Its role is unimportant. 
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2. P R O B L E M S  W I T H  Q U A S I - T O E P L I T Z  M A T R I C E S  

A square matrix M in which the elements m/j depend only on the difference i - j in the indices, is 
called a Toeplitz matrix [6, 7]. The same element occurs in every position along any fixed diagonal of 
the matrix. Matrix (1.7) is a tridiagonal symmetric Toeplitz polynomial matrix. Quasi-Toeplitz matrices 
[7] differ from Toeplitz matrices in that the first and last elements along the main diagonal can be arbitrary 
and different from the main element forming that diagonal. Various problems lead to characteristic 
matrices of  this form, for example, when the thickness and elastic properties of  the lowest and highest 
flexible layers are different from the characteristics of the intermediate flexible layers. Below we consider 
two limiting cases: a packet not attached to one of the casings, and a packet that is free both below and 
above (Figs lb and c, respectively). Such problems can be useful in the mechanics of layered composites. 

We first consider the problem corresponding to Fig. l(c). In the notations of  Section 1 we have 

+ 

= qn = 0 (2.1) 

Owl'" + Tw I" + ~l(w I - w 2 ) = 0 
H , e  

Dw i +Twi '+~( -w i_  I + 2 w i - w i + l ) = O ,  i = 2  ..... n - 1  

Ow~"" + TwO" + I](w n - wn_ 1 ) = 0 (2.2) 

After  dividing all the equations by I~ the characteristic matrix differs from (1.7) only in that the first 
and last elements of  the main diagonal are replaced by ~ = ~ - 1 .  As before, we introduce complex 
variables a and b through the conditions 

= a + b, ~ = ab (2.3) 

The determinants of various orders are denoted by dn. We have 

d I =~, d 2 = ~ - 1  

d i=~d i_ l -d i_  2, i = 3  ..... n - l ;  dn=~dn_l -dn_  2 (2.4) 

When a # b, in accordance with (1.15) 

d i = (bi-I(d2 - a d l ) - a i - I ( d 2  - b d l ) ) l  ( b - a ) ,  i = 3 ..... n -1  (2.5) 

From the recurrence relation (2.4) for dn and using (2.3) we obtain 

d n = ( b " - l ( ~ -  a) 2 - a " - I ( ~ - b ) 2 ) / ( b - a ) = ( b n - I ( b - l )  2 - a n - I ( a - 1 ) 2 ) l ( b - a )  (2.6) 

Assuming I a I = [,b l, from (2.3) we quickly obtain b = a, and so b - 1 = a - 1, -arg  b = arg a - 9, 
b - a = - 2  Im a. Frora an elementary geometrical consideration of Fig. 2 we establish the important result 

Z -= arg(a - 1) = n - (~ - 9) / 2 = (~ + 9) / 2 (2.7) 

and rewrite (2.6) as 

dn ± la - 11__2 2 sin(2Z + (n - 1)9) (2.8) 
I al sin 9 

The equation dn =" 0 gives the set of angles 

2 )~+(n-1)9=/c~ ,  9 # j ~ ,  k, j=0,+l ,+_2 .... (2.9) 

Expressing Z using (2.7), we obtain 

9 = l a t i n ,  (k=0,_+l,+_2 .... ) n ( k  #O,+_n,+_2n .... ) (2.10) 

Then, since ~ = a + b = 2 Re a, the roots of  d n =  0 are 
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t3. 

Fig. 2. 

~ = 2 c o s  k x ,  k = l  ..... n - 1  (2.11) 
n 

and all the  o the r  values of  k listed in (2.10) give no new values of  ~ o the r  than  those  shown in (2.11). 
The  variable ~ = ~ - 1 is a function o f  the fundamenta l  variable 4, and tin is considered to be  a polynomial  
o f  degree  n in ~ over  the field o f  complex  numbers .  Fo rmula  (2.11) contains  only n - I different  values  
of  the  roots  of  the po lynomia l  dn. We find the last roo t  by consider ing the  previously ignored case 
a = b .  

W h e n  a = b Eqs  (1.11) are  identical  and have the  fo rm 

( d  i - a d i _ l )  = a ( d i _  I - a d i _ 2 ) ,  i = 3 ..... n - 1  (2.12) 

Consider ing (2.12) as a recur rence  relat ion with respect  to the expressions in brackets  and repea ted ly  
applying it, we obtain  

d i - ad i_  ! = a i -2  ( d  2 - ad!  ) (2.13) 

We write (2.13) replacing the  index i with i - 1, and  subst i tute the  expression for  di-1  into (2.13). We 
obta in  

d i = a2d i_2  + 2 a  i -2  ( d  E - a d  1 ) (2.14) 

Repea t ing  these arguments ,  we arrive at  the fo rmula  

d i = ( i  - l)ai-Ed2 - ( i  - 2 ) a i - | d l ,  i = 3 ..... n - 1 (2.15) 

Substi tut ing (2.15) with i = n - 1, i = n - 2 into the  recur rence  re la t ion (2.4) for  dn, we have 

d n -- (~(n - 2) - ( n  - 3 ) a ) a n - a d 2  - ( ~ ( n  - 3) - ( n  - 4 ) a ) a n - 2 d l  (2.16) 

W h e n  a = b we obtain  

= 2a - 1, d t =  2 a -  1, d 2 = 4a 2 - 2 a -  1 (2.17) 

We subst i tute (2.17) into (2.16) and  af ter  reduct ion we  obta in  

d,, = (a  - 1 ) a n - 3 ( n ( 2 a  + l ) (a  - 1) + 2(a + 1)) (2.18) 

The  equat ion  d~ = 0 has a s imple roo t  a = 1, a roo t  a = 0 of  multiplicity o f n  - 3 and roots  

a = (n - 2 + [(n - 2)(9n - 2)] Y2) / 4n (2.19) 

O f  these  only a = 1 satisfies the condi t ion a 2 = 1. F r o m  (2.3) it cor responds  to the  value 
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~o = 2 (2.20) 

All toge ther  formulae  (2.11) and (2.20) define exactly n different  roots  of  the characterist ic equat ion.  
We will now an~dyse the stability o f  a f ree  packet .  
W h e n  n = 1 the equat ion  

D~,  4 + T'~ 2 = 0 (2.21) 

gives ~2 = 0 and - T  = D~. 2. The  extremal  values are  ~2 = 0, T. = 0. Equil ibr ium is impossible for  any 
finite force  T. 

W h e n  n = 2 the characterist ic equat ion  g2 _ 1 = 0 gives roots  ~1 = ~2 = -1 .  The  first o f  these leads 
to Eq. (2.21), fron~t which 7t 2. = T. = 0. The  second gives the equat ion  

D~,'* + T~ 2 + 21] = 0 (2.22) 
leading to the critical values 

2g 2 = (21] / D) ~ ,  T, = 2(2D13) ~ (2.23) 

As before  equil ibrium is impossible for  a non-zero  force T, but  a non-trivial "second m o d e "  exists. 
For  n = 3 or  more ,  writing (2.11) and (2.20) as one  formula  (2.11) with indices k -- 0 . . . .  , n - 1, we 

obtain n equat ions 

D~.4 + 7X2 + 2[~(1 - cos-k~-) = 0, 

f rom which, by a s tandard  procedure ,  we de te rmine  

k = 0 ..... n - l (2.24) 

LD\  n).J 
(2.25) 

k = 0  ..... n - I  

The  brackets  in flae radicals vanish when k = 0, hence  equil ibrium is impossible for  any T # 0. 
All these conclusions suppor t  physical intuit ion and well-known results for  an infinite beam.  
Substi tuting ~ instead o f  ~ into the characterist ic  matr ix of  system (2.2), we obtain n degenera te  

:/ j 1 numerical  matrices.  Each  o f  these annihilates some numerical  vec tor  (W~ . . . .  , W~) which we call an 
e igenvector  and whose componen ts  we now determine .  

For  ~ = 2 the solution is obvious 

= | ,  i = | . . . . .  n (2.26) 

W h e n j  = 1, . . . . .  n - I we seek the componen ts  W{in the form 

W/j = Asini  J~ + Bcosi  Jn , i = 1 ..... n (2.27) 
n tl 

with unde t e rmined  coeff icientsA and B. Substituting (2.27) into t he j t h  matrix, we see, af ter  reduct ion,  
that  the second to the  (n - 1)th equat ions  are satisfied identically for  all A and B. The  first and last 
equat ions  are identical and give the ratio 

B = ctg g__nn (2.28) 
"A" An 

From this, substituting (2.28) into (2.27), we obtain (apar t  f rom normalizat ion)  

(2i - l ) j  
W/j = cos ~, i = 1 ..... n, j = ! ..... n - 1 (2.29) 

2n 
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W j is the amplitude of the corrugation of the ith plate in the j th  mode for a packet of n plates. The 
I . . . 

shapes of these stability-loss modes for some n and j are shown in Fig. 3. 
Thus the case of a free packet has been completely investigated analytically. All the critical parameters 

and corresponding corrugation shapes are given by explicit formulae using elementary functions. 
We will now consider the case of the packet shown in Fig. l(b), which is only attached from above 

to an undeformable casing. We then have 

q~ = O, Wn+l = 0 (2.30) 

The first equation in (2.2) still holds, as does the second when i = 2 . . . . .  n. The characteristic matrix 
differs from (1.7) only in that the first element of the main diagonal is ~ = ~ - 1. When a ~ b, we find, 
as for (2.8), that 

dn = la - 11 sin( x + n~0) (2.31) 
lal sintp 

From this, like (2.10) 

2 k - l  (k=0,_+l,_+_2 .... ) n ]  2 k - I / "  ~0,_+1,+9 .... "~] (2.32) 
tp.= 2 n + l  7t' k 2 n + l  J 

Like (2.11) we have 

~k = 2 COS 2k - 1 g, k = 1 ..... n (2.33) 
2 n + l  

Unlike the previous case, the list of values of k in (2.32) is restricted on account of 9 falling into the 
interval (-to, ~). Formula (2.33) contains n different roots of the equation dn = 0. The ease a = b leads 
to the polynomial 

d n = a n - 2 ( ( 2 a  2 - a - 1)n + 1) (2.34) 

which has no roots a such that a 2 = 1. 

I l l i  I I I  1 ] / I ~  i l l / l l / l l  I / I  / I  / I  

J / / / J l / / / ~ / /  I / I I I I ~  I I  I / J l l / 1 1  

[ l / [ l / l l / [ I / ] ] / / / l l / / ] l l l l l l l l l J  

n . = ~ : = ~  

Fig. 3. Fig. 4. 
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Substituting (2..33) into the expressions for ~ and ~ in terms of k, the usual reduction gives 
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[ D  \ 2 n + l  
T* = 212D~( 1 - c°s 2k - 12n+l rc ) ]~  

k = 1 ..... n (2.35) 

The minimum values of T. with respect to k is reached at k = 1. Comparing this with (1.26) we verify 
that it is smaller than for a packet fixed at both sides. The corresponding wave number is also smaller, 
i.e. the wavelength is larger than in the original Toeplitz case. 

The eigenvector corresponding to ~ is sought in the form (2.27) and has components 

W/k = cos.(2i - l)(2k - 1) n, i,k = 1 ..... n (2.36) 
2(2n + 1) 

The first mode k = 1 is "in-phase". Its corrugation amplitude is larger the nearer the plate is to the 
free surface. For higher modes this property is lost. For particular numbers of layers n the first and 
some other modes are shown in Fig. 4. It is interesting to note that the set of amplitude moduli for all 
nodes at fixed n is the same. Moreover, it is identical with the set of amplitudes of the problem for the 
free packet with odd n (the formulae for the problem in Fig. l(b) can be obtained from similar formulae 
for the problem in Fig. l(c) when n a n d j  are replaced by 2n + 1 and 2k - 1 respectively). 

Thus this case of "surface-layer stability" has been also completely investigated by simple analytic 
methods and lead.,; to simple formulae. 
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